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ML Conceptually

I ML: Automating converting ”experience” or data into
knowledge.

1. Necessary for complex tasks, useful for inherent flexibility.



Statistical Learning Framework

I Basic setting:

1. Domain space X ie covariate space.

2. Label set: space of possible responses/explanatory variables.

Focus here on Y = {1, 2}

3. Training data as finite sequence of ordered pairs in X × Y

4. Prediction rule h : X → Y; also called hypothesis or classifier.



Statistical Learning Framework continued

I Notes on basic framework

1. Assume data generated from unknown distribution D Generally

assume iid.

2. Assume perfect/correct but unknown classifier fi exists and yi

are mapped to by fi from X .

3. Error of h is

LD,{(h) = Px∼D(h(x) 6= f (x) = D({x : h(x) 6= f (x)}).

Minimize!

4. Note D : A→ [0, 1] where A ⊂ X

5. L called risk or generalization error



Statistical Learning Framework continued

I Empirical Risk Minimization

1. Don’t know D or f. Minimize training error (empirical

risk/error) instead.

2. LS(h) = |{i∈[m]:h(xi ) 6=yi}|
m ∈ [0, 1]

3. Problem: can easily lead to overfitting ie define perfect

classifier for training data that is terrible classifier on other

data.

4. Solution: restriction on set of possible classifiers H. Big topic:

conditions on H to guarantee no overfitting.

5. First restriction: |H| <∞ which leads to...



ERM

I Realizability Assumption (2.1) etc.

1. There exists h∗ ∈ H st LD,f (h∗) = 0 ie there exists for every

empirical risk minimization problem there exists a perfect

classifier.

2. Possible issue: data drawn from D could be bad representation

of D. Need to think of error as random.

3. Let δ be probability sample from D is non-representative

sample so (1− δ) is our confidence parameter (our sample is

representative).

4. Let ε be the accuracy parameter

5. Want to use these to put upper bound on what samples can be

realized that lead to classification failure.



ERM cont.

I Want to figure out bounding Dm({S|x : L(D,f )(hs) > ε}) Ie

bound the realized samples of size m mapped by the classifier

incorrectly classifies by ε.

I Define the set of bad classifiers as

HB = {h ∈ H : LD,f (h) > ε} and let

M = {S|x : ∃h ∈ HB, LS(h) = 0} be the set of misleading

samples.

I Follows that {Sx : LD,f (hs) > ε} ⊂ M ie set of samples that

give a bad classifier are a subset of the misleading samples set.



ERM cont.

I Can relatedly think of all the possible bad classifiers that

manage to give perfect prediction due to a misleading sample;

this is equivalent to M.

I It follows that

Dm({S|x : L(D,f )(hs) > ε}) ≤ Dm(∪h∈Hb{S|x : Ls(h) = 0})

I By D(A ∪ B) ≤ D(A) + D(B), it follows that RHS

≤ Σh∈Hb Dm({S|x : LS(h) = 0})

I Next due to iid assumption and how we defined ε, it follows

that Dm({xi : h(xi ) = yi}) = (1− LD,f )m ≤ (1− ε)m ≤ e−εm



ERM cont.

I Combining the previous inequality with the inequality from

two slides back we get, Dm({S|x : L(D,f )(hs) > ε}) ≤ |H|e−εm

which provides the upper bound on the realized samples of

size m mapped by the classifier incorrectly, which we can

summarize as,

I Corollary 2.3: If H is finite, δ ∈ (0, 1) and ε > 0 and let m

be any integer st. m ≥ log( (|H|
δ )1

ε . Then for any true classifier

f and distribution D assuming realizability wit probability at

least 1− δ over iid sample of size m, we have that for every

ERM classifier hs it holds that LD,f (hs) ≤ ε.



ERM cont.

I Ie. for sufficiently large m, classifiers from finite classifier class

will be probably (with confidence 1− δ) approximately (up to

ε wrong) correct.

I Hence why, PAC learning environment = probably

approximately correct.



PAC Learnability Definition

I (3.1) PAC Learnability: H is PAC learnable if there exists a

function mH : (0, 1)2 → N and a learning algorithm with the

following property: ∀ε, δ ∈ (0, 1), ∀D over X and for every

true classifier f : X → 0, 1, and if the realizable assumptions

holds, then when running the learning algorithm on

m ≥ mh(ε, δ) iid samples generated by D and classified by f,

the algorithm returns a classifier h st with probability at least

1− δ that LD,f (h) ≤ ε



PAC Learnability notes

I ε = how far the classifier can be from the optimal classifier f

I δ how likely the classifier is to be ε close to f

I notice that mh determines how many samples needed to be

probably accurate; we will focus on finding the minimal mh ie

minimal integer that guarantees probable accuracy.

I (3.2) ∀|H| <∞, mh(ε, δ) ≤ log( |H|
δ

)
ε



Agnostic PAC

I Realizability seems unrealistic....solution: agnostic PAC!

I (3.3) A hypothesis class H is agnostic PAC learning if

∃mh : (0, 1)2 → N and a learning algorithm with the following

property: ∀ε, δ ∈ (0, 1) and ∀ D over X × Y when running the

learning algorithm on m ≥ mh(ε, δ) iid examples generated by

D, a hypothesis h is returned st with probability at least 1− δ,

LD(h) ≤ minh′∈H(LD(h′) + ε)

I Ie we can guarantee we are only ε worse than the best

predictor h′ from a class of classifiers H.



Extensions to Agnostic PAC

I Generally we refer to the agnostic PAC learning environment

as PAC learning.

I Can expand Y to be larger than {0, 1}, but still assuming it is

finite.

I Can change risk to be expected squared difference (or

something else) to deal with regression problems.

I Both these extensions change LD(h), and thus we need to

rethink our above definition....



Agnostic PAC with General Loss

I (3.4) A hypothesis class H is agnostic PAC learning with

respect to set Z and loss function l : H × Z → R+ if

∃mh : (0, 1)2 → N and a learning algorithm with the following

property: ∀ε, δ ∈ (0, 1) and ∀ D over Z when running the

learning algorithm on m ≥ mh(ε, δ) iid examples generated by

D, a hypothesis h is returned st with probability at least 1− δ,

LD(h) ≤ minh′∈H(LD(h′) + ε)

I where LD(h) = E(z∼D)(l(h, z) and Z = X × Y (for our

problems though this can be generalized)



TLDR;

I PAC learning feels natural to stats/math world, learning from

”experience” ie data ie we are still trying to approximate a

function.

I New ish to us maybe because PAC learning is about thinking

about bounds on what is possible and sorta avoiding

asymptotics.

I Still very general, but allows us to move to VC dimension

(what characteristics of H allow us to deduce it is PAC

learnable?), be more rigorous with a lot of the techniques we

have learned, etc.


